New Equivalences for Pattern Avoiding Involutions
نویسندگان
چکیده
We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification of S5, S6, and S7 for involutions.
منابع مشابه
New Equivalences for Pattern Avoidance for Involutions
We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification of S5, S6, and S7 for both permutations and involut...
متن کاملGenerating-tree isomorphisms for pattern-avoiding involutions∗
We show that for k ≥ 5 and the permutations τk = (k − 1)k(k − 2) . . . 312 and Jk = k(k − 1) . . . 21, the generating tree for involutions avoiding the pattern τk is isomorphic to the generating tree for involutions avoiding the pattern Jk. This implies a family of Wilf equivalences for pattern avoidance by involutions; at least the first member of this family cannot follow from any type of pre...
متن کاملPattern-avoiding involutions: exact and asymptotic enumeration
We consider the enumeration of pattern-avoiding involutions, focusing in particular on sets defined by avoiding a single pattern of length 4. We directly enumerate the involutions avoiding 1342 and the involutions avoiding 2341. As we demonstrate, the numerical data for these problems exhibits some surprising behavior. This strange behavior even provides some very unexpected data related to the...
متن کاملar X iv : m at h / 02 06 16 9 v 1 [ m at h . C O ] 1 7 Ju n 20 02 SOME STATISTICS ON RESTRICTED 132 INVOLUTIONS
In [GM] Guibert and Mansour studied involutions on n letters avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary pattern on k letters. They also established a bijection between 132-avoiding involutions and Dyck word prefixes of same length. Extending this bijection to bilateral words allows to determine more parameters; in particular, we consider the...
متن کاملRestricted 132 - Involutions
We study generating functions for the number of involutions of length n avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary permutation τ of length k. In several interesting cases these generating functions depend only on k and can be expressed via Chebyshev polynomials of the second kind. In particular, we show that involutions of length n avoiding ...
متن کامل